Transcriptional Profiling of Pseudomonas aeruginosa Infections

Pseudomonas aeruginosa is an opportunistic pathogen that causes life-devastating acute as well as chronic biofilm-associated infections with limited treatment options. Its success is largely due to its remarkable adaptability. P. aeruginosa uses different long- and short-term adaptive mechanisms to increase its fitness, both at the population level through genetic diversification and at the individual cell level by adapting gene expression. These adapted gene expression profiles can be fixed by the accumulation of patho-adaptive mutations. The latter are often found in transcriptional regulators and lead to rewiring of the regulatory network to promote survival at the infected host site. In this chapter, we review recent developments in transcriptional profiling and explain how these provide new insights into the establishment and maintenance of P. aeruginosa infections. We illustrate what can be learned from the application of advanced RNA-seq technology, such as ex vivo RNA-seq, host–pathogen crosstalk (dual RNA-seq), or recording of transcriptional heterogeneity within a bacterial population (single-cell RNA-seq). In addition, we discuss how large transcriptome datasets from a variety of clinical isolates can be used to gain an expanded understanding of bacterial adaptation during the infection process. Global genotype–phenotype correlation studies provide a unique opportunity to discover new evolutionary pathways of infection-related phenotypes and led to the discovery of different strategies of the pathogen P. aeruginosa to build a biofilm. Insights gained from large-scale, multi-layered functional -omics approaches will continue to contribute to a more comprehensive understanding of P. aeruginosa adaptation to the host habitat and promises to pave the way for novel strategies to combat recalcitrant infections.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 117.69 Price includes VAT (France)
Softcover Book EUR 158.24 Price includes VAT (France)
Hardcover Book EUR 158.24 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs
Article Open access 27 August 2018

Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia
Article Open access 16 December 2016

RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms
Article Open access 20 September 2019
References
- Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13(8):497–508 ArticleCASPubMedGoogle Scholar
- Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T (2021) Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. npj Biofilms Microbiomes 7:1–13 ArticleGoogle Scholar
- Arce-Rodríguez A, Pankratz D, Preusse M, Nikel PI, Häussler S (2022) Dual effect: high NADH levels contribute to efflux-mediated antibiotic resistance but drive lethality mediated by reactive oxygen species. MBio 13:e02434–e02421 ArticlePubMed CentralGoogle Scholar
- Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683 ArticleCASPubMedGoogle Scholar
- Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20 ArticleCASPubMedGoogle Scholar
- Baldelli V, D’Angelo F, Pavoncello V, Fiscarelli EV, Visca P, Rampioni G, Leoni L (2020) Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE. Virulence 11:652–668 ArticleCASPubMedPubMed CentralGoogle Scholar
- Bielecki P, Komor U, Bielecka A, Müsken M, Puchałka J, Pletz MW, Ballmann M, Martins dos Santos VA, Weiss S, Häussler S (2013) Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites. Environ Microbiol 15:570–587 ArticleCASPubMedGoogle Scholar
- Bielecki P, Muthukumarasamy U, Eckweiler D, Bielecka A, Pohl S, Schanz A, Niemeyer U, Oumeraci T, von Neuhoff N, Ghigo JM, Häussler S (2014) In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. MBio 5:1–12 ArticleGoogle Scholar
- Binder SC, Eckweiler D, Schulz S, Bielecka A, Nicolai T, Franke R, Häussler S, Meyer-Hermann M (2016) Functional modules of sigma factor regulons guarantee adaptability and evolvability. Sci Rep 6:1–11 ArticleGoogle Scholar
- Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58 ArticleGoogle Scholar
- Blattman SB, Jiang W, Oikonomou P, Tavazoie S (2020) Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat Microbiol 5:1192–1201 ArticleCASPubMedPubMed CentralGoogle Scholar
- Bodey GP, Bolivar R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313 ArticleCASPubMedGoogle Scholar
- Boucher JC, Yu H, Mudd MH, Deretic V (1997) Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65:3838–3846 ArticleCASPubMedPubMed CentralGoogle Scholar
- Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032 ArticleCASPubMedGoogle Scholar
- Cabeen MT (2014) Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS One 9:e88743 ArticlePubMedPubMed CentralGoogle Scholar
- Cao L, Gurevich A, Alexander KL, Naman CB, Leão T, Glukhov E, Luzzatto-Knaan T, Vargas F, Quinn R, Bouslimani A, Nothias LF, Singh NK, Sanders JG, Benitez RAS, Thompson LR, Hamid MN, Morton JT, Mikheenko A, Shlemov A, Korobeynikov A, Friedberg I, Knight R, Venkateswaran K, Gerwick WH, Gerwick L, Dorrestein PC, Pevzner PA, Mohimani H (2019) MetaMiner: a scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Syst 9:600–608.e4 ArticleCASPubMedPubMed CentralGoogle Scholar
- Casadesús J, D’Ari R (2002) Memory in bacteria and phage. Bioessays 24:512–518 ArticlePubMedGoogle Scholar
- Cases I, De Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11(6):248–253 ArticleCASPubMedGoogle Scholar
- Cattoir V, Narasimhan G, Skurnik D, Aschard H, Roux D, Ramphal R, Jyot J, Lory S (2012) Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus. MBio 3(6):e00410-12 ArticlePubMed CentralGoogle Scholar
- Chugani S, Greenberg EP (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 42:29–35 ArticleCASPubMedGoogle Scholar
- Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front Microbiol 10:913 ArticlePubMedPubMed CentralGoogle Scholar
- Clark ST, Diaz Caballero J, Cheang M, Coburn B, Wang PW, Donaldson SL, Zhang Y, Liu M, Keshavjee S, Yau YCW, Waters VJ, Elizabeth Tullis D, Guttman DS, Hwang DM, Hauser AR, Jain M, Bar-Meir M, McColley SA, Maughan H, Schaedel C, Pittman JE, Smith EE, Mowat E, Hogardt M, Heesemann J, Jain M, Bragonzi A, Fothergill JL, Mowat E, Ledson MJ, Walshaw MJ, Winstanley C, Hill D, Hoffman LR, Behrends V, Foweraker JE, Laughton CR, Brown DFJ, Bilton D, Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I, Mayer-Hamblett N, Burns JL, Jelsbak L, Tingpej P, Huse HK, Cramer N, Chung JC, Klockgether J, Workentine ML, Ashish A, Darch SE, Wilder CN, Allada S, Schuster M, Lee B, Johnsen PJ, Barclay ML, Breidenstein EB, de la Fuente-Núñez C, Hancock RE, Chewapreecha C, Williams D, Willner D, Nguyen D, Yeung ATY, Parayno A, Hancock REW, Meritt JH, Kadouri DE, O’Toole GA, Alexander DB, Zuberer DA, Palmer KL, Aye LM, Whiteley M, Zlosnik JEA (2015) Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. Sci Rep 5:10932 ArticleCASPubMedPubMed CentralGoogle Scholar
- Clay ME, Hammond JH, Zhong F, Chen X, Kowalski CH, Lee AJ, Porter MS, Hampton TH, Greene CS, Pletneva EV, Hogan DA (2020) Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc Natl Acad Sci U S A 117:3167–3173 ArticleCASPubMedPubMed CentralGoogle Scholar
- Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Møller K, Wolcott RD, Rumbaugh KP, Bjarnsholt T, Whiteley M (2018) Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A 115:E5125–E5134 ArticleCASPubMedPubMed CentralGoogle Scholar
- Costerton JW (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 ArticleCASPubMedGoogle Scholar
- Damron FH, Oglesby-Sherrouse AG, Wilks A, Barbier M (2016) Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep 6:1–12 ArticleGoogle Scholar
- D’Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, Williams P, Visca P, Leoni L, Rampioni G (2018) Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob Agents Chemother 62 Google Scholar
- Dar D, Dar N, Cai L, Newman DK (2021) Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373(6556):eabi4882 ArticleCASPubMedPubMed CentralGoogle Scholar
- D’Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E, Smith EE, Nguyen H, Ernst RK, Larson Freeman TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S, Klausen M, Goodlett DR, Burns JL, Ramsey BW, Miller SI (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64:512–533 ArticlePubMedPubMed CentralGoogle Scholar
- Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23–29 ArticlePubMedGoogle Scholar
- Depke T, Thöming JG, Kordes A, Häussler S, Brönstrup M (2020) Untargeted LC-MS metabolomics differentiates between virulent and avirulent clinical strains of Pseudomonas aeruginosa. Biomolecules 10:1041 ArticleCASPubMed CentralGoogle Scholar
- Doing G, Koeppen K, Occipinti P, Harty CE, Hogan DA (2020) Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: an intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 16 Google Scholar
- Donnert M, Elsheikh S, Arce-Rodriguez A, Pawar V, Braubach P, Jonigk D, Haverich A, Weiss S, Müsken M, Häussler S (2020) Targeting bioenergetics is key to counteracting the drug-tolerant state of biofilm-grown bacteria. PLoS Pathog 16:e1009126 ArticleCASPubMedPubMed CentralGoogle Scholar
- Dötsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Häussler S (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7:e31092 ArticlePubMedPubMed CentralGoogle Scholar
- Dötsch A, Schniederjans M, Khaledi A, Hornischer K, Schulz S, Bielecka A, Eckweiler D, Pohl S, Häussler S (2015) The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. MBio 6:e00749–e00715 ArticlePubMedPubMed CentralGoogle Scholar
- Elmassry MM, Mudaliar NS, Kottapalli KR, Dissanaike S, Griswold JA, San Francisco MJ, Colmer-Hamood JA, Hamood AN (2019) Pseudomonas aeruginosa alters its transcriptome related to carbon metabolism and virulence as a possible survival strategy in blood from trauma patients. mSystems 4(4):e00312-18 ArticlePubMedPubMed CentralGoogle Scholar
- Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100 ArticlePubMedGoogle Scholar
- Erdmann J, Thöming JG, Pohl S, Pich A, Lenz C, Häussler S (2019) The core proteome of biofilm-grown clinical Pseudomonas aeruginosa isolates. Cell 8:1129 ArticleCASGoogle Scholar
- Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP (2020) Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol 28(9):732–743 ArticleCASPubMedPubMed CentralGoogle Scholar
- Felgner S, Preusse M, Beutling U, Stahnke S, Pawar V, Rohde M, Brönstrup M, Stradal T, Häussler S (2020) Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake. Elife 9:1–56 ArticleGoogle Scholar
- Feltner JB, Wolter DJ, Pope CE, Groleau M, Smalley NE, Greenberg EP (2016) LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. Am Soc Microbiol 7:e01513–e01516 CASGoogle Scholar
- Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, Molin S (2012) Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10:841–851 ArticleCASPubMedGoogle Scholar
- Forsman A (2015) Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity (Edinb) 115:276–284 ArticleCASGoogle Scholar
- Frimodt-Møller J, Rossi E, Haagensen JAJ, Falcone M, Molin S, Johansen HK (2018) Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Sci Rep 8:1–13 ArticleGoogle Scholar
- Frisk A, Schurr JR, Wang G, Bertucci DC, Marrero L, Hwang SH, Hassett DJ, Schurr MJ (2004) Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72:5433–5438 ArticleCASPubMedPubMed CentralGoogle Scholar
- Fung C, Naughton S, Turnbull L, Tingpej P, Rose B, Arthur J, Hu H, Harmer C, Harbour C, Hassett DJ, Whitchurch CB, Manos J (2010) Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol 59:1089–1100 ArticleCASPubMedGoogle Scholar
- Furukawa S, Kuchma SL, O’Toole GA (2006) Keeping their options open: acute versus persistent infections. J Bacteriol 188:1211–1217 ArticleCASPubMedPubMed CentralGoogle Scholar
- Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B Biol Sci 365:547–556 ArticleGoogle Scholar
- Gabrielaite M, Johansen HK, Molin S, Nielsen FC, Marvig RL (2020) Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. MBio 11:1–16 ArticleGoogle Scholar
- Gellatly SL, Needham B, Madera L, Trent MS, Hancock REWW (2012) The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. Infect Immun 80:3122–3131 ArticleCASPubMedPubMed CentralGoogle Scholar
- Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57 ArticleCASPubMedGoogle Scholar
- Gonzalez MR, Ducret V, Leoni S, Fleuchot B, Jafari P, Raffoul W, Applegate LA, Que Y-A, Perron K (2018) Transcriptome analysis of Pseudomonas aeruginosa cultured in human burn wound exudates. Front Cell Infect Microbiol 8:39 ArticlePubMedPubMed CentralGoogle Scholar
- Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574 ArticleCASPubMedPubMed CentralGoogle Scholar
- Govan JRW, Martin DW, Deretic VP (1992) Mucoid Pseudomonas aeruginosa and cystic fibrosis: the role of mutations in muc loci. FEMS Microbiol Lett 100:323–329 ArticleCASPubMedGoogle Scholar
- Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P (2021) Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 25:1315–1360 ArticleCASPubMedPubMed CentralGoogle Scholar
- Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6 Google Scholar
- Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301 ArticleCASPubMedGoogle Scholar
- Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 ArticleCASPubMedGoogle Scholar
- Harrington NE, Littler JL, Harrison F (2022) Transcriptome analysis of Pseudomonas aeruginosa biofilm infection in an ex vivo pig model of the cystic fibrosis lung. Appl Environ Microbiol 88(3):e0178921 ArticlePubMedGoogle Scholar
- Harrison F, Diggle SP (2016) An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology (United Kingdom) 162:1755–1760 CASGoogle Scholar
- Harty CE, Martins D, Doing G, Mould DL, Clay ME, Occhipinti P, Nguyen D, Hogan DA (2019) Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in Pseudomonas aeruginosa. J Bacteriol 201:794–812 ArticleGoogle Scholar
- Häussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6:546–551 ArticlePubMedGoogle Scholar
- Häussler S, Tümmler B, Weissbrodt H, Rohde M, Steinmetz I (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625 ArticlePubMedGoogle Scholar
- Häussler S, Ziegler I, Löttel A, Götz FV, Rohde M, Wehmhöhner D, Saravanamuthu S, Tümmler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301 ArticlePubMedGoogle Scholar
- Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273 ArticleCASPubMedGoogle Scholar
- Ho Sui SJ, Lo R, Fernandes AR, Caulfield MDG, Lerman JA, Xie L, Bourne PE, Baillie DL, Brinkman FSL (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents 40:246–251 ArticleCASPubMedPubMed CentralGoogle Scholar
- Hogardt M, Heesemann J (2013) Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 358:91–118 CASPubMedGoogle Scholar
- Imdahl F, Saliba AE (2020) Advances and challenges in single-cell RNA-seq of microbial communities. Curr Opin Microbiol 57:102–110 ArticleCASPubMedGoogle Scholar
- Imdahl F, Vafadarnejad E, Homberger C, Saliba AE, Vogel J (2020) Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat Microbiol 5:1202–1206 ArticleCASPubMedGoogle Scholar
- Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, Leoni L, Bragonzi A, Visca P (2013a) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110:7458–7463 ArticleCASPubMedPubMed CentralGoogle Scholar
- Imperi F, Massai F, Pillai CR, Longo F, Zennaro E, Rampioni G, Visc P, Leoni L (2013b) New life for an old Drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005 ArticleCASPubMedPubMed CentralGoogle Scholar
- James GA, Swogger E, Wolcott R, Pulcini ED, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44 ArticlePubMedGoogle Scholar
- Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP Signaling in Bacteria. Annu Rev Genet 40:385–407 ArticleCASPubMedGoogle Scholar
- Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3(4):281–294 ArticleCASPubMedGoogle Scholar
- Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S (2022) Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. npj Biofilms Microbiomes 8:1–14 ArticleGoogle Scholar
- Joo H-S, Otto M (2012) Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 19:1503–1513 ArticleCASPubMedPubMed CentralGoogle Scholar
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589 ArticleCASPubMedPubMed CentralGoogle Scholar
- Keays T, Ferris W, Vandemheen KL, Chan F, Yeung S-W, Mah T-F, Ramotar K, Saginur R, Aaron SD (2009) A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J Cyst Fibros 8:122–127 ArticleCASPubMedGoogle Scholar
- Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. In: Comprehensive physiology. Wiley, Hoboken, NJ, pp 1417–1439 ChapterGoogle Scholar
- Khaledi A, Schniederjans M, Pohl S, Rainer R, Bodenhofer U, Xia B, Klawonn F, Bruchmann S, Preusse M, Eckweiler D, Dötsch A, Häussler S (2016) Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:4722–4733 ArticleCASPubMedPubMed CentralGoogle Scholar
- Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T, Oliver A, Cabot G, Kola A, Gastmeier P, Hogardt M, Jonas D, Mofrad MR, Bremges A, McHardy AC, Häussler S (2020) Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med 12:e10264 ArticleCASPubMedPubMed CentralGoogle Scholar
- Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150 ArticleCASPubMedPubMed CentralGoogle Scholar
- Klockgether J, Cramer N, Fischer S, Wiehlmann L, Tümmler B (2018) Long-term microevolution of Pseudomonas aeruginosa differs between mildly and severely affected cystic fibrosis lungs. Am J Respir Cell Mol Biol 59:246–256 ArticleCASPubMedGoogle Scholar
- Koehorst JJ, Van Dam JCJ, Van Heck RGA, Saccenti E, Dos Santos VAPM, Suarez-Diez M, Schaap PJ (2016) Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 6:1–13 ArticleGoogle Scholar
- Kordes A, Grahl N, Koska M, Preusse M, Arce-Rodriguez A, Abraham W-R, Kaever V, Häussler S (2019a) Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host. ISME J 1 Google Scholar
- Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Warnecke G, Häussler S (2019b) Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 10:3397 ArticlePubMedPubMed CentralGoogle Scholar
- Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 110:1059–1064 ArticleCASPubMedGoogle Scholar
- Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559 ArticleCASPubMedGoogle Scholar
- Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G (2021) Microbial single-cell RNA sequencing by split-pool barcoding. Science 371(6531):eaba5257 ArticleCASPubMedGoogle Scholar
- Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT (2018) Dual Transcriptomics of host-pathogen interaction of cystic fibrosis isolate Pseudomonas aeruginosa PASS1 with zebrafish. Front Cell Infect Microbiol 8:406 ArticleCASPubMedPubMed CentralGoogle Scholar
- Lambert G, Kussell E (2014) Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet 10:e1004556 ArticlePubMedPubMed CentralGoogle Scholar
- Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343 ArticleCASPubMedGoogle Scholar
- Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543 ArticlePubMedPubMed CentralGoogle Scholar
- Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Déziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90 ArticlePubMedPubMed CentralGoogle Scholar
- Lee CK, De Anda J, Baker AE, Bennett RR, Luo Y, Lee EY, Keefe JA, Helali JS, Ma J, Zhao K, Golestanian R, O’Toole GA, Wong GCL (2018) Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc Natl Acad Sci U S A 115:4471–4476 ArticleCASPubMedPubMed CentralGoogle Scholar
- Li S, She P, Zhou L, Zeng X, Xu L, Liu Y, Chen L, Wu Y (2020) High-throughput identification of antibacterials against Pseudomonas aeruginosa. Front Microbiol 11:3109 ArticleGoogle Scholar
- Lieberman OJ, Orr MW, Wang Y, Lee VT (2014) High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol 9:183–192 ArticleCASPubMedGoogle Scholar
- Lorenz A, Pawar V, Häussler S, Weiss S (2016) Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 590:3941–3959 ArticleCASPubMedGoogle Scholar
- Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA, Wolfgang MC, Wong GCL, O’Toole GA (2015) A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. MBio 6 Google Scholar
- Luther A, Urfer M, Zahn M, Müller M, Wang SY, Mondal M, Vitale A, Hartmann JB, Sharpe T, Monte FL, Kocherla H, Cline E, Pessi G, Rath P, Modaresi SM, Chiquet P, Stiegeler S, Verbree C, Remus T, Schmitt M, Kolopp C, Westwood MA, Desjonquères N, Brabet E, Hell S, LePoupon K, Vermeulen A, Jaisson R, Rithié V, Upert G, Lederer A, Zbinden P, Wach A, Moehle K, Zerbe K, Locher HH, Bernardini F, Dale GE, Eberl L, Wollscheid B, Hiller S, Robinson JA, Obrecht D (2019) Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576:452–458 ArticleCASPubMedGoogle Scholar
- Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605 ArticleCASPubMedPubMed CentralGoogle Scholar
- Malone JG (2015) Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist 8:237–247 ArticlePubMedPubMed CentralGoogle Scholar
- Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916 ArticleCASPubMedGoogle Scholar
- Martin DW, Schurr MJ, Mudd MH, Govan JR, Holloway BW, Deretic V (1993) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381 ArticleCASPubMedPubMed CentralGoogle Scholar
- Marvig RL, Sommer LM, Molin S, Johansen HK (2015) Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47:57–64 ArticleCASPubMedGoogle Scholar
- Mayer-Hamblett N, Rosenfeld M, Gibson RL, Ramsey BW, Kulasekara HD, Retsch-Bogart GZ, Morgan W, Wolter DJ, Pope CE, Houston LS, Kulasekara BR, Khan U, Burns JL, Miller SI, Hoffman LR (2014) Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes. Am J Respir Crit Care Med 190:289–297 ArticlePubMedPubMed CentralGoogle Scholar
- Mellini M, Di Muzio E, D’Angelo F, Baldelli V, Ferrillo S, Visca P, Leoni L, Polticelli F, Rampioni G (2019) In silico selection and experimental validation of FDA-approved drugs as anti-quorum sensing agents. Front Microbiol 10:2355 ArticlePubMedPubMed CentralGoogle Scholar
- Mikkelsen H, Sivaneson M, Filloux A (2011) Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 13:1666–1681 ArticleCASPubMedGoogle Scholar
- Mohimani H, Kersten RD, Liu WT, Wang M, Purvine SO, Wu S, Brewer HM, Pasa-Tolic L, Bandeira N, Moore BS, Pevzner PA, Dorrestein PC (2014) Automated genome mining of ribosomal peptide natural products. ACS Chem Biol 9:1545–1551 ArticleCASPubMedPubMed CentralGoogle Scholar
- Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922 ArticleCASPubMedPubMed CentralGoogle Scholar
- Müsken M, Di Fiore S, Römling U, Häussler S (2010) A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 5:1460–1469 ArticlePubMedGoogle Scholar
- Müsken M, Klimmek K, Sauer-Heilborn A, Donnert M, Sedlacek L, Suerbaum S, Häussler S (2017) Towards individualized diagnostics of biofilm-associated infections: a case study. npj Biofilms Microbiomes 3:22 ArticlePubMedPubMed CentralGoogle Scholar
- Muthukumarasamy U, Preusse M, Kordes A, Koska M, Schniederjans M, Khaledi A, Häussler S (2020) Single-nucleotide polymorphism-based genetic diversity analysis of clinical Pseudomonas aeruginosa Isolates. Genome Biol Evol 12:396–406 ArticleCASPubMedPubMed CentralGoogle Scholar
- Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, Grimwood K (2001) Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 138:699–704 ArticleCASPubMedGoogle Scholar
- Norman TM, Lord ND, Paulsson J, Losick R (2013) Memory and modularity in cell-fate decision making. Nature 503:481–486 ArticleCASPubMedPubMed CentralGoogle Scholar
- Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087 ArticleCASPubMedPubMed CentralGoogle Scholar
- Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W (2020) PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 48:5967–5985 ArticleCASPubMedPubMed CentralGoogle Scholar
- Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588 ArticleCASPubMedPubMed CentralGoogle Scholar
- Patell S, Gu M, Davenport P, Givskov M, Waite RD, Welch M (2010) Comparative microarray analysis reveals that the core biofilm-associated transcriptome of Pseudomonas aeruginosa comprises relatively few genes. Environ Microbiol Rep 2:440–448 ArticleCASPubMedGoogle Scholar
- Penaranda C, Chumbler NM, Hung DT (2021) Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog 17:e1009534 ArticleCASPubMedPubMed CentralGoogle Scholar
- Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234 ArticleCASPubMedPubMed CentralGoogle Scholar
- Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209(Pt 12):2362–2367 ArticlePubMedGoogle Scholar
- Pohl S, Klockgether J, Eckweiler D, Khaledi A, Schniederjans M, Chouvarine P, Tümmler B, Häussler S (2014) The extensive set of accessory Pseudomonas aeruginosa genomic components. FEMS Microbiol Lett 356:235–241 ArticleCASPubMedGoogle Scholar
- Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond Ser B Biol Sci 270:1433–1440 ArticleGoogle Scholar
- Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58 ArticleCASPubMedGoogle Scholar
- Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO (2021) Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 50(7):3658–3672 ArticleGoogle Scholar
- Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228 ArticlePubMedGoogle Scholar
- Ronin I, Katsowich N, Rosenshine I, Balaban NQ (2017) A long-term epigenetic memory switch controls bacterial virulence bimodality. Elife 6:e19599 ArticlePubMedPubMed CentralGoogle Scholar
- Rossi E, Falcone M, Molin S, Johansen HK (2018) High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun 9:3459 ArticlePubMedPubMed CentralGoogle Scholar
- Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, Molin S, Johansen HK (2021) Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 19(5):331–342 ArticleCASPubMedGoogle Scholar
- Sadiq S, Rana NF, Zahid MA, Zargaham MK, Tanweer T, Batool A, Naeem A, Nawaz A, Rizwan-ur-Rehman, Muneer Z, Siddiqi AR (2020) Virtual screening of FDA-approved drugs against LasR of Pseudomonas aeruginosa for antibiofilm potential. Molecules 25:3723 ArticleCASPubMed CentralGoogle Scholar
- Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211 ArticleCASPubMedPubMed CentralGoogle Scholar
- Sastry AV, Gao Y, Szubin R, Hefner Y, Xu S, Kim D, Choudhary KS, Yang L, King ZA, Palsson BO (2019) The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat Commun 10:5536 ArticleCASPubMedPubMed CentralGoogle Scholar
- Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP (2019) Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 10:1–10 ArticleGoogle Scholar
- Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland, MA Google Scholar
- Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dötsch A, Hornischer K, Bruchmann S, Düvel J, Häussler S (2015) Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 11:e1004744 ArticlePubMedPubMed CentralGoogle Scholar
- Schuster M, Peter Greenberg E (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81 ArticleCASPubMedGoogle Scholar
- Seupt A, Schniederjans M, Tomasch J, Häussler S (2021) Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrob Agents Chemother 65(1):e01166-20 ArticleGoogle Scholar
- Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680 ArticleCASPubMedGoogle Scholar
- Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492 ArticleCASPubMedPubMed CentralGoogle Scholar
- Soto-Aceves MP, Cocotl-Yañez M, Servín-González L, Soberón-Chávez G (2021) The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1. J Bacteriol 203:e00475–e00420 ArticlePubMedPubMed CentralGoogle Scholar
- Soukarieh F, Mashabi A, Richardson W, Oton EV, Romero M, Roberston SN, Grossman S, Sou T, Liu R, Halliday N, Kukavica-Ibrulj I, Levesque RC, Bergstrom CASS, Kellam B, Emsley J, Heeb S, Williams P, Stocks MJ, Cámara M (2021) Design and evaluation of new quinazolin-4(3 H )-one derived PqsR antagonists as quorum sensing quenchers in Pseudomonas aeruginosa. ACS Infect Dis 7:2666–2685 ArticleCASPubMedGoogle Scholar
- Stewart PS (2015) Antimicrobial tolerance in biofilms. Microbiol Spectr 3 Google Scholar
- Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210 ArticleCASPubMedGoogle Scholar
- Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackerman Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702.e13 ArticleCASPubMedPubMed CentralGoogle Scholar
- Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 ArticleCASPubMedGoogle Scholar
- Tan J, Hammond JH, Hogan DA, Greene CS (2016) ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems 1(1):e00025–e00015 ArticlePubMedPubMed CentralGoogle Scholar
- Tata M, Wolfinger MT, Amman F, Roschanski N, Dötsch A, Sonnleitner E, Häussler S, Bläsi U (2016) RNASeq based transcriptional profiling of Pseudomonas aeruginosa PA14 after short- and long-term anoxic cultivation in synthetic cystic fibrosis sputum medium. PLoS One 11:e0147811 ArticlePubMedPubMed CentralGoogle Scholar
- Thöming JG, Häussler S (2022) Pseudomonas aeruginosa is more tolerant under biofilm than under planktonic growth conditions: a multi-isolate survey. Front Cell Infect Microbiol 12:113 ArticleGoogle Scholar
- Thöming JG, Tomasch J, Preusse M, Koska M, Grahl N, Pohl S, Willger SD, Kaever V, Müsken M, Häussler S (2020) Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. npj Biofilms Microbiomes 6:1–13 ArticleGoogle Scholar
- Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M (2014) Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet 10:e1004518 ArticlePubMedPubMed CentralGoogle Scholar
- Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291(24):12547–12555 ArticleCASPubMedPubMed CentralGoogle Scholar
- Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A (2001) The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 98:6911–6916 ArticleCASPubMedPubMed CentralGoogle Scholar
- Valli RXE, Lyng M, Kirkpatrick CL (2020) There is no hiding if you Seq: recent breakthroughs in Pseudomonas aeruginosa research revealed by genomic and transcriptomic next-generation sequencing. J Med Microbiol 69(2):162–175 ArticlePubMedGoogle Scholar
- Wagner VE, Iglewski BH (2008) P. aeruginosa biofilms in CF infection. Clin Rev Allergy Immunol 35:124–134 ArticleCASPubMedGoogle Scholar
- Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192(1):365–369 ArticleCASPubMedGoogle Scholar
- Wang BX, Cady KC, Oyarce GC, Ribbeck K, Lauba MT (2021) Two-component signaling systems regulate diverse virulence-associated traits in Pseudomonas aeruginosa. Appl Environ Microbiol 87:1–18 ArticleGoogle Scholar
- Wheeler KM, Cárcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, Cummings RD, Wozniak DJ, Ribbeck K (2019) Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 4(12):2146–2154 ArticlePubMedPubMed CentralGoogle Scholar
- Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–13909 ArticleCASPubMedPubMed CentralGoogle Scholar
- WHO (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed [WWW Document]. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 12.8.21
- WHO (2021) Antimicrobial resistance [WWW Document]. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 3.10.22
- Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Köhler T, Van Delden C, Weinel C, Slickers P, Tümmler B (2007) Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8101–8106 ArticleCASPubMedPubMed CentralGoogle Scholar
- Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191 ArticleCASPubMedGoogle Scholar
- Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, Franklin MJ (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194:2062–2073 ArticleCASPubMedPubMed CentralGoogle Scholar
- Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW et al (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:9427–9431 ArticleCASPubMedPubMed CentralGoogle Scholar
- Winstanley C, O’Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327–337 ArticleCASPubMedPubMed CentralGoogle Scholar
- Wolf DM, Fontaine-Bodin L, Bischofs I, Price G, Keasling J, Arkin AP (2008) Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS One 3:e1700 ArticlePubMedPubMed CentralGoogle Scholar
- Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC, Parkins MD, Rabin HR, Surette MG (2013) Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One 8:e60225 ArticleCASPubMedPubMed CentralGoogle Scholar
- Xu Y, Maltesen RG, Larsen LH, Schønheyder HC, Le VQ, Nielsen JL, Nielsen PH, Thomsen TR, Nielsen KL (2016) In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 16:80 ArticlePubMedPubMed CentralGoogle Scholar
- Yaeger LN, Coles VE, Chan DCK, Burrows LL (2021) How to kill Pseudomonas—emerging therapies for a challenging pathogen. Ann N Y Acad Sci 1496(1):59–81 ArticlePubMedGoogle Scholar
- Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O, Hoiby N, Sommer MOAA, Molin S (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 108:7481–7486 ArticleCASPubMedPubMed CentralGoogle Scholar
Author information
Authors and Affiliations
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark Janne G. Thöming & Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany Janne G. Thöming & Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany Susanne Häussler
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany Susanne Häussler
- Janne G. Thöming